CSE4203: Computer Graphics Chapter - 4 (part - B) Ray Tracing

Mohammad Imrul Jubair

Outline

- Ray-tracing

Credit

Fundamentals of Computer Graphics FOURTH ED I T IO N

Steve Marschner

Peter Shirley
with
Michael Achikhmin Wichael Cletcher
Naty Hoftman
Carretefotinsea Mamara Munine Tamara Munsy Willam B. Thomp Q Perce wibemsen Brin wrili

$3 D \rightarrow 2 D$

- Implementing projection: (3D \rightarrow 2D)
- Ray-tracing technique
- Motivation:
- From how we see!
- The ray is "traced" into the scene
- the first object hit is the one seen.
- In this case, the triangle $T 2$ is
 returned.

Warm-up (1/9)

Warm-up (2/9)

Warm-up (3/9)

Warm-up (4/9)

Warm-up (5/9)

Warm-up (6/9)

Warm-up (7/9)

Warm-up (8/9)

Warm-up (9/9)

Ray-tracing Basics (1/15)

Ray-tracing Basics (2/15)

Ray-tracing Basics (3/15)

Ray-tracing Basics (4/15)

Ray-tracing Basics (5/15)

Ray-tracing Basics (6/15)

Ray-tracing Basics (7/15)

0	0	0	1	1	0	0	0
0	0	1	1	1	1	0	0
0	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	0
0	0	1	1	1	1	0	0
0	0	0	1	1	0	0	0
$M(i, j)$							

Ray-tracing Basics (8/15)

Ray-tracing Basics (9/15)

- Computing one pixel at a time
- Each pixel "looks" in a direction
- Any object that is seen by a pixel
- intersect "viewing ray"
- viewing ray: line through that pixel is looking

Ray-tracing Basics (10/15)

- Once that object is found, determine the color of the pixel.

- a shading computation is need, that uses

- the intersection point
- surface normal (n)
- other information

Ray-tracing Basics (11/15)

Ray-tracing Basics (12/15)

Ray-tracing Basics (13/15)

Ray-tracing Basics (14/15)

			a_{1}				
	a_{2}						

Ray-tracing Basics (15/15)

Ray-Tracing Algorithm (1/3)

- A basic ray tracer therefore has three parts:
- ray generation:
- computes the origin and direction of each pixel's viewing ray.
- ray intersection:
- finds the closest object intersecting the viewing ray.
- shading:
- computes the pixel color based on the results of ray intersection.

Ray-Tracing Algorithm (2/3)

- for each pixel do:
- compute viewing ray
- find first object hit by ray and its surface normal \mathbf{n}
- set pixel color computed from hit point, light, and \mathbf{n}

Ray-Tracing Algorithm (3/3)

- for each pixel do:

- computeviewing ray
- find first object hit by ray and its surface normal n--
- set pixel color computed from point, light, and n

$M(i, j)=\operatorname{shading}(L, H, n)<--^{\prime}$

Practice Problems

1. Is the projected image on the image plane in the given example perspective?
2. Consider the following setup*:

- Image plane: Situated at $y=13$, parallel to $Z X$ plane, (Resolution: 11×11), M is the corresponding array and Y-axis goes through $(6,6)$.
- Sphere: Center at $(0,0,0)$, Radius $=6$.
- Light: at $(0,15,0)$.

Now -
a) Draw the ray-tracing setup showing two viewing rays (one hitting, another missing).
b) Fill up the array (pixel) with 1 (for hitting) and 0 (for missing). Show the hitting/ missing mathematically for at least one pixel.
c) Fill up the array (pixel) with angles between surface normal and viewing ray. Show the angle calculation for at least one pixel.

* This problem can be helpful for understanding basic ray-tracing algorithm from the scratch.

Thank You

